Molecular and biotechnological aspects of microbial proteases.
نویسندگان
چکیده
Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology.
منابع مشابه
Improved Performance of Soil Microbial Fuel Cell by Adding Earthworms
Soil microbial fuel cells (SMFCs) are expected as an application to produce sustainable energy. Here, we focused on soil ecosystems, specifically the earthworms which are known to improve soil-fertility by degrading fallen leaves or plant litter. The aim of this study was to investigate the effect of earthworm on power generation of the SMFC. The maximum power density and the internal res...
متن کاملDigestive alkaline proteases from the Tunisian barbell (Barbus callensis): Characterization and application as a detergent additive, in chicken feather-degradation and as a dehairing agent
Alkaline crude enzymes from the viscera of the Tunisian barbel (Barbus callensis) were extracted and characterized. Proteolytic crude extract from barbel viscera was active and stable in alkaline solution. The optimum pH and temperature were 11.0 and 55 °C, respectively, using casein as a substrate. The crude alkaline protease was extremely stable in the pH range of 5.0-12.0. Zymography activit...
متن کاملDigestive alkaline proteases from the Tunisian barbell (Barbus callensis): Characterization and application as a detergent additive, in chicken feather-degradation and as a dehairing agent
Alkaline crude enzymes from the viscera of the Tunisian barbel (Barbus callensis) were extracted and characterized. Proteolytic crude extract from barbel viscera was active and stable in alkaline solution. The optimum pH and temperature were 11.0 and 55 °C, respectively, using casein as a substrate. The crude alkaline protease was extremely stable in the pH range of 5.0-12.0. Zymography activit...
متن کاملBiotechnological Applications of Microbial (Per)chlorate Reduction
While the microbial degradation of a chloroxyanion-based herbicide was first observed nearly ninety years ago, only recently have researchers elucidated the underlying mechanisms of perchlorate and chlorate [collectively, (per)chlorate] respiration. Although the obvious application of these metabolisms lies in the bioremediation and attenuation of (per)chlorate in contaminated environments, a d...
متن کاملA novel subtilase with NaCl-activated and oxidant-stable activity from Virgibacillus sp. SK37
BACKGROUND Microbial proteases are one of the most commercially valuable enzymes, of which the largest market share has been taken by subtilases or alkaline proteases of the Bacillus species. Despite a large amount of information on microbial proteases, a search for novel proteases with unique properties is still of interest for both basic and applied aspects of this highly complex class of enz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology and molecular biology reviews : MMBR
دوره 62 3 شماره
صفحات -
تاریخ انتشار 1998